4 research outputs found

    Active control of qubit-qubit entanglement evolution

    Full text link
    In this work, we propose a scheme to design the time evolution of the entropy of entanglement between two qubits. It is shown an explicit accurate solution for the inverse problem of determining the time dependence of the coupling constant from a user-defined dynamical entanglement function. Such an active control of entanglement can be implemented in many different physical implementations of coupled qubits, and we briefly comment on the use of interacting flux qubits.Comment: Author added, Expanded version, 10 figure

    Entanglement in Weisskopf-Wigner theory of atomic decay in free space

    Full text link
    In this paper, we use the Weisskopf-Wigner theory to study the entanglement in the state of the free-space radiation field produced from vacuum due to atomic decay. We show how bipartite entanglement is shared between different partitions of the radiation modes. We investigate the role played by the size of the partitions and their detuning with the decaying atom. The dynamics of the atom-field entanglement during the atomic decay is also briefly discussed. From this dynamics, we assert that such entanglement is the physical quantity that fix the statistical atomic decay time.Comment: 7 pages, 4 figures, changed from purity to entropy of entanglement calculations in the replaced versio

    Different models of gravitating Dirac fermions in optical lattices

    No full text
    corecore